Package: sparsepca 0.1.0
sparsepca: Sparse Principal Component Analysis (SPCA)
Sparse principal component analysis (SPCA) attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach provides better interpretability for the principal components in high-dimensional data settings. This is, because the principal components are formed as a linear combination of only a few of the original variables. This package provides efficient routines to compute SPCA. Specifically, a variable projection solver is used to compute the sparse solution. In addition, a fast randomized accelerated SPCA routine and a robust SPCA routine is provided. Robust SPCA allows to capture grossly corrupted entries in the data.
Authors:
sparsepca_0.1.0.tar.gz
sparsepca_0.1.0.zip(r-4.5)sparsepca_0.1.0.zip(r-4.4)sparsepca_0.1.0.zip(r-4.3)
sparsepca_0.1.0.tgz(r-4.4-any)sparsepca_0.1.0.tgz(r-4.3-any)
sparsepca_0.1.0.tar.gz(r-4.5-noble)sparsepca_0.1.0.tar.gz(r-4.4-noble)
sparsepca_0.1.0.tgz(r-4.4-emscripten)sparsepca_0.1.0.tgz(r-4.3-emscripten)
sparsepca.pdf |sparsepca.html✨
sparsepca/json (API)
# Install 'sparsepca' in R: |
install.packages('sparsepca', repos = c('https://erichson.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/erichson/spca/issues
dimension-reductiondimensionality-reductionpcaspca
Last updated 7 years agofrom:fa896289a6. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | NOTE | Oct 29 2024 |
R-4.5-linux | NOTE | Oct 29 2024 |
R-4.4-win | NOTE | Oct 29 2024 |
R-4.4-mac | NOTE | Oct 29 2024 |
R-4.3-win | NOTE | Oct 29 2024 |
R-4.3-mac | NOTE | Oct 29 2024 |