Package: sparsepca 0.1.0

sparsepca: Sparse Principal Component Analysis (SPCA)

Sparse principal component analysis (SPCA) attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach provides better interpretability for the principal components in high-dimensional data settings. This is, because the principal components are formed as a linear combination of only a few of the original variables. This package provides efficient routines to compute SPCA. Specifically, a variable projection solver is used to compute the sparse solution. In addition, a fast randomized accelerated SPCA routine and a robust SPCA routine is provided. Robust SPCA allows to capture grossly corrupted entries in the data.

Authors:N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

sparsepca_0.1.0.tar.gz
sparsepca_0.1.0.zip(r-4.5)sparsepca_0.1.0.zip(r-4.4)sparsepca_0.1.0.zip(r-4.3)
sparsepca_0.1.0.tgz(r-4.4-any)sparsepca_0.1.0.tgz(r-4.3-any)
sparsepca_0.1.0.tar.gz(r-4.5-noble)sparsepca_0.1.0.tar.gz(r-4.4-noble)
sparsepca_0.1.0.tgz(r-4.4-emscripten)sparsepca_0.1.0.tgz(r-4.3-emscripten)
sparsepca.pdf |sparsepca.html
sparsepca/json (API)

# Install 'sparsepca' in R:
install.packages('sparsepca', repos = c('https://erichson.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/erichson/spca/issues

On CRAN:

dimension-reductiondimensionality-reductionpcaspca

6.68 score 64 stars 3 packages 62 scripts 1.4k downloads 3 exports 3 dependencies

Last updated 7 years agofrom:fa896289a6. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winNOTEOct 29 2024
R-4.5-linuxNOTEOct 29 2024
R-4.4-winNOTEOct 29 2024
R-4.4-macNOTEOct 29 2024
R-4.3-winNOTEOct 29 2024
R-4.3-macNOTEOct 29 2024

Exports:robspcarspcaspca

Dependencies:latticeMatrixrsvd